区块链芝士丨什么是安全散列算法SHA256?(1)-零点财经

区块链芝士丨什么是安全散列算法SHA256?(1)

椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线密码(ECC)对数字签名算法(DSA)的模拟。ECDSA于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。它在1998年既已为ISO所接受,并且包含它的其他一些标准亦在ISO的考虑之中。

安全散列算法SHA(Secure Hash Algorithm)是美国国家安全局 (NSA) 设计,美国国家标准与技术研究院(NIST) 发布的一系列密码散列函数,包括 SHA-1、SHA-224、SHA-256、SHA-384 和 SHA-512 等变体。主要适用于数字签名标准(DigitalSignature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。下面以 SHA-1为例,介绍该算法计算消息摘要的原理。
对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。

SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。

一、术语和概念

(一)位(Bit),字节(Byte)和字(Word)

SHA1始终把消息当成一个位(bit)字符串来处理。本文中,一个“字”(Word)是32位,而一个“字节”(Byte)是8位。比如,字符串“abc”可以被转换成一个位字符串:01100001 01100010 01100011。它也可以被表示成16进制字符串:0x616263.

(二)运算符和符号

下面的逻辑运算符都被运用于“字”(Word)

X^Y = X,Y逻辑与

X / Y = X,Y逻辑或

X XOR Y= X,Y逻辑异或

~X = X逻辑取反

X+Y定义如下:

字 X 和Y 代表两个整数 x 和y, 其中0 <= x < 2^32 且 0 <= y < 2^32. 令整数z= (x + y) mod 2^32.这时候 0 <= z < 2^32. 将z转换成字Z,那么就是 Z = X + Y.

循环左移位操作符Sn(X)。X是一个字,n是一个整数,0<=n<=32。Sn(X)= (X<<n)or(x>>32-n)</n)or(x>

X<<n< span=”” style=”word-wrap: break-word”>定义如下:抛弃最左边的n位数字,将各个位依次向左移动n位,然后用0填补右边的n位(最后结果还是32位)。X>>n是抛弃右边的n位,将各个位依次向右移动n位,然后在左边的n位填0。因此可以叫Sn(X)位循环移位运算

二、SHA1算法描述

在SHA1算法中,我们必须把原始消息(字符串,文件等)转换成位字符串。SHA1算法只接受位作为输入。假设我们对字符串“abc”产生消息摘要。首先,我们将它转换成位字符串如下:

01100001 0110001001100011

―――――――――――――

‘a’=97 ‘b’=98‘c’=99

这个位字符串的长度为24。下面我们需要5个步骤来计算MD5。

(一)补位

消息必须进行补位,以使其长度在对512取模以后的余数是448。也就是说,(补位后的消息长度)%512 = 448。即使长度已经满足对512取模后余数是448,补位也必须要进行。

补位是这样进行的:先补一个1,然后再补0,直到长度满足对512取模后余数是448。总而言之,补位是至少补一位,最多补512位。还是以前面的“abc”为例显示补位的过程。

原始信息:01100001 01100010 01100011

补位第一步:0110000101100010 01100011 1

首先补一个“1”

补位第二步:0110000101100010 01100011 10…..0

然后补423个“0”

我们可以把最后补位完成后的数据用16进制写成下面的样子

61626380 0000000000000000 00000000

00000000 0000000000000000 00000000

00000000 0000000000000000 00000000

00000000 00000000

现在,数据的长度是448了,我们可以进行下一步操作。

本文由 零点财经 作者:tao 发表,其版权均为 零点财经 所有,文章内容系作者个人观点,不代表 零点财经 对观点赞同或支持。如需转载,请注明文章来源。
分享生成图片
55

发表回复

区块链芝士丨什么是安全散列算法SHA256?(1)

2021-06-21 11:10:16

椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线密码(ECC)对数字签名算法(DSA)的模拟。ECDSA于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。它在1998年既已为ISO所接受,并且包含它的其他一些标准亦在ISO的考虑之中。

安全散列算法SHA(Secure Hash Algorithm)是美国国家安全局 (NSA) 设计,美国国家标准与技术研究院(NIST) 发布的一系列密码散列函数,包括 SHA-1、SHA-224、SHA-256、SHA-384 和 SHA-512 等变体。主要适用于数字签名标准(DigitalSignature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。下面以 SHA-1为例,介绍该算法计算消息摘要的原理。
对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。

SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。

一、术语和概念

(一)位(Bit),字节(Byte)和字(Word)

SHA1始终把消息当成一个位(bit)字符串来处理。本文中,一个“字”(Word)是32位,而一个“字节”(Byte)是8位。比如,字符串“abc”可以被转换成一个位字符串:01100001 01100010 01100011。它也可以被表示成16进制字符串:0x616263.

(二)运算符和符号

下面的逻辑运算符都被运用于“字”(Word)

X^Y = X,Y逻辑与

X / Y = X,Y逻辑或

X XOR Y= X,Y逻辑异或

~X = X逻辑取反

X+Y定义如下:

字 X 和Y 代表两个整数 x 和y, 其中0 <= x < 2^32 且 0 <= y < 2^32. 令整数z= (x + y) mod 2^32.这时候 0 <= z < 2^32. 将z转换成字Z,那么就是 Z = X + Y.

循环左移位操作符Sn(X)。X是一个字,n是一个整数,0<=n<=32。Sn(X)= (X<<n)or(x>>32-n)</n)or(x>

X<<n< span=”” style=”word-wrap: break-word”>定义如下:抛弃最左边的n位数字,将各个位依次向左移动n位,然后用0填补右边的n位(最后结果还是32位)。X>>n是抛弃右边的n位,将各个位依次向右移动n位,然后在左边的n位填0。因此可以叫Sn(X)位循环移位运算

二、SHA1算法描述

在SHA1算法中,我们必须把原始消息(字符串,文件等)转换成位字符串。SHA1算法只接受位作为输入。假设我们对字符串“abc”产生消息摘要。首先,我们将它转换成位字符串如下:

01100001 0110001001100011

―――――――――――――

‘a’=97 ‘b’=98‘c’=99

这个位字符串的长度为24。下面我们需要5个步骤来计算MD5。

(一)补位

消息必须进行补位,以使其长度在对512取模以后的余数是448。也就是说,(补位后的消息长度)%512 = 448。即使长度已经满足对512取模后余数是448,补位也必须要进行。

补位是这样进行的:先补一个1,然后再补0,直到长度满足对512取模后余数是448。总而言之,补位是至少补一位,最多补512位。还是以前面的“abc”为例显示补位的过程。

原始信息:01100001 01100010 01100011

补位第一步:0110000101100010 01100011 1

首先补一个“1”

补位第二步:0110000101100010 01100011 10…..0

然后补423个“0”

我们可以把最后补位完成后的数据用16进制写成下面的样子

61626380 0000000000000000 00000000

00000000 0000000000000000 00000000

00000000 0000000000000000 00000000

00000000 00000000

现在,数据的长度是448了,我们可以进行下一步操作。